

Welcome to ppmd-cffi’s documentation!

Contents:

	User Guide
	Getting started

	Command line

	Programming Interfaces

	.ppmd file comression/decompression

	Bare encoding/decoding PPMd data

	Contributor guide
	Development environment

	Code Contributions

	Authors

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

User Guide

PPM, Prediction by partial matching, is a wellknown compression technique
based on context modeling and prediction. PPM models use a set of previous
symbols in the uncompressed symbol stream to predict the next symbol in the
stream.

PPMd is an implementation of PPMII by Dmitry Shkarin.

The ppmd-cffi package uses core C files from p7zip.
The library has a bare function and no metadata/header handling functions.
This means you should know compression parameters and input/output data
sizes.

Getting started

Install

The ppmd-cffi is written by Python and C language bound with CFFI, and can be downloaded
from PyPI(aka. Python Package Index) using standard ‘pip’ command as like follows;

$ pip install ppmd-cffi

Command line

ppmd-cffi provide command line script to hande .ppmd file.

To compress file

$ ppmd target.dat

To decompress ppmd file

$ ppmd -x target.ppmd

To decompress to STDOUT

$ ppmd -x -c target.ppmd

Programming Interfaces

.ppmd file comression/decompression

ppmd-cffi project provide two functions which compress and decompress .ppmd archive file.
PpmdCompressor class provide compress function compress() and PpmdDecompressor class
provide extraction function decompress().

Both classes takes version= argument which default is 8, means PPMd Ver. I.
Also classes takes target, fname and ftime arguments which is a target file and its properties.
target should be a file-like object which has write() method.
fname and ftime is a file property which is stored in archive as meta data.
fname should be string, and ftime should be a datetime object.

order and mem_in_mb parameters will be vary.

Compression with PPMd ver. H

targetfile = pathlib.Path('target.dat')
fname = 'target.dat'
ftime = datetime.utcfromtimestamp(targetfile.stat().st_mtime)
archivefile = 'archive.ppmd'
order = 6
mem_in_mb = 16
with archivefile.open('wb') as target:
 with targetfile.open('rb') as src:
 with PpmdCompressor(target, fname, ftime, order, mem_in_mb, version=7) as compressor:
 compressor.compress(src)

Compression with PPMd ver. I

targetfile = pathlib.Path('target.dat')
fname = 'target.dat'
ftime = datetime.utcfromtimestamp(targetfile.stat().st_mtime)
archivefile = 'archive.ppmd'
order = 6
mem_in_mb = 8
with archivefile.open('wb') as target:
 with targetfile.open('rb') as src:
 with PpmdCompressor(target, fname, ftime, order, mem_in_mb, version=8) as compressor:
 compressor.compress(src)

Decompression

When construct PpmdDecompressor object, it read header from specified archive file.
The header hold a compression parameters such as PPMd version, order and memory size.
It also has a filename and timestamp.
PpmdDecompressor select a proper decoder based on header data.
You need to handle filename and timestamp by your self.
A decompressor method will write data to specified file-like object, which should have
write() method.

targetfile = pathlib.Path('target.ppmd')
with targetfile.open('rb') as target:
 with PpmdDecompressor(target, target_size) as decompressor:
 extractedfile = pathlib.Path(parent.joinpath(decompressor.filename))
 with extractedfile.open('wb') as ofile:
 decompressor.decompress(ofile)
 timestamp = datetime_to_timestamp(decompressor.ftime)
 os.utime(str(extractedfile), times=(timestamp, timestamp))

Bare encoding/decoding PPMd data

There are several classes to handle bare PPMd data. Note: mem parameter should be
as bytes not MB.

	Ppmd7Encoder(dst, order, mem)

	Ppmd7Decoder(src, order, mem)

	Ppmd8Encoder(det, order, mem, restore)

	Ppmd8Decoder(src, order, mem, restore)

Contributor guide

Development environment

If you’re reading this, you’re probably interested in contributing to ppmd.
Thank you very much! The purpose of this guide is to get you to the point
where you can make improvements to the py7zr and share them with the rest of the team.

Setup Python and C compiler

The ppmd is written in the Python and C languages bound with CFFI, C Foreign
Function Interface. Python installation for various platforms with various ways.
You need to install Python environment which support pip command.
Venv/Virtualenv is recommended for development.

We have a test suite with python 3.7, 3.8 and pypy3.
If you want to run all the test with these versions and variant on your local,
you should install these versions. You can run test with CI environment on
Github actions.

Get Early Feedback

If you are contributing, do not feel the need to sit on your contribution
until it is perfectly polished and complete. It helps everyone involved
for you to seek feedback as early as you possibly can.
Submitting an early, unfinished version of your contribution
for feedback in no way prejudices your chances of getting that contribution accepted,
and can save you from putting a lot of work into a contribution that is not suitable for the project.

Code Contributions

Steps submitting code

When contributing code, you’ll want to follow this checklist:

	Fork the repository on GitHub.

	Run the tox tests to confirm they all pass on your system. If they don’t, you’ll need
to investigate why they fail. If you’re unable to diagnose this yourself,
raise it as a bug report.

	Write tests that demonstrate your bug or feature. Ensure that they fail.

	Make your change.

	Run the entire test suite again using tox, confirming that all tests pass
including the ones you just added.

	Send a GitHub Pull Request to the main repository’s master branch.
GitHub Pull Requests are the expected method of code collaboration on this project.

Code review

Contribution will not be merged until they have been code reviewed. There are limited
reviewer in the team, reviews from other contributors are also welcome.
You should implemented a review feedback unless you strongly object to it.

Code style

The ppmd uses the PEP8 code style. In addition to the standard PEP8, we have an extended
guidelines

	line length should not exceed 125 charactors.

	It also use MyPy static type check enforcement.

Authors

ppmd-cffi is written and maintained by Hiroshi Miura <miurahr@linux.com>

Contributors, listed alphabetically, are:

Glossary

	binary file

	A file object able to read and write
bytes-like objects.
Examples of binary files are files opened in binary mode ('rb',
'wb' or 'rb+'), sys.stdin.buffer,
sys.stdout.buffer, and instances of io.BytesIO and
gzip.GzipFile.

See also text file for a file object able to read and write
str objects.

	bytes-like object

	An object that supports the bufferobjects and can
export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many
common memoryview objects. Bytes-like objects can
be used for various operations that work with binary data; these include
compression, saving to a binary file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation
often refers to these as “read-write bytes-like objects”. Example
mutable buffer objects include bytearray and a
memoryview of a bytearray.
Other operations require the binary data to be stored in
immutable objects (“read-only bytes-like objects”); examples
of these include bytes and a memoryview
of a bytes object.

	contiguous

	A buffer is considered contiguous exactly if it is either
C-contiguous or Fortran contiguous. Zero-dimensional buffers are
C and Fortran contiguous. In one-dimensional arrays, the items
must be laid out in memory next to each other, in order of
increasing indexes starting from zero. In multidimensional
C-contiguous arrays, the last index varies the fastest when
visiting items in order of memory address. However, in
Fortran contiguous arrays, the first index varies the fastest.

	file object

	An object exposing a file-oriented API (with methods such as
read() or write()) to an underlying resource. Depending
on the way it was created, a file object can mediate access to a real
on-disk file or to another type of storage or communication device
(for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or
streams.

There are actually three categories of file objects: raw
binary files, buffered
binary files and text files.
Their interfaces are defined in the io module. The canonical
way to create a file object is by using the open() function.

	file-like object

	A synonym for file object.

	text file

	A file object able to read and write str objects.
Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically.
Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of
io.StringIO.

See also binary file for a file object able to read and write
bytes-like objects.

	path-like object

	An object representing a file system path. A path-like object is either
a str or bytes object representing a path, or an object
implementing the os.PathLike protocol. An object that supports
the os.PathLike protocol can be converted to a str or
bytes file system path by calling the os.fspath() function;
os.fsdecode() and os.fsencode() can be used to guarantee a
str or bytes result instead, respectively. Introduced
by PEP 519 [https://www.python.org/dev/peps/pep-0519].

Index

 B
 | C
 | F
 | P
 | T

B

 	
 	binary file

 	
 	bytes-like object

C

 	
 	C-contiguous

 	
 	contiguous

F

 	
 	file object

 	
 	file-like object

 	Fortran contiguous

P

 	
 	path-like object

 	
 	
 Python Enhancement Proposals

 	PEP 519

T

 	
 	text file

 nav.xhtml

 Table of Contents

 		
 Welcome to ppmd-cffi’s documentation!

 		
 User Guide

 		
 Getting started

 		
 Install

 		
 Command line

 		
 Programming Interfaces

 		
 .ppmd file comression/decompression

 		
 Compression with PPMd ver. H

 		
 Compression with PPMd ver. I

 		
 Decompression

 		
 Bare encoding/decoding PPMd data

 		
 Contributor guide

 		
 Development environment

 		
 Code Contributions

 		
 Authors

 		
 Glossary

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

